Beverages are important components of diet as they facilitate hydration. However, their high sugar content is often implicated in metabolic diseases development. Tamarind (Tamarindus indica), turmeric (Curcuma longa L.), and ginger (Zingiber officinale) may help address this issue due to their antioxidant properties. A study was therefore conducted to assess the antioxidant properties of a tamarind-based beverage prepared with 10% turmeric and ginger. The beverages were subjected to spontaneous fermentation for 36 hours at 37°C. Subsequent analyses were performed to evaluate vitamin C content, total phenolic compounds, flavonoids, and beverage antioxidant potential. The in vivo hypolipidemic and antioxidant properties were also tested on healthy 2-month-old rabbits. Results revealed that the combination of tamarind (90%), turmeric (5%), and ginger (5%) led to a significant increase in vitamin C and phenolic compound levels, rising from 27.14 to 42.95 mg/L and from 1.498 to 1.514 mg GAE/L, respectively. In tamarind-turmeric-ginger beverage, flavonoid levels increased from 0.132 ± 0.02 to 0.164 ± 0.01 mg QE/L. DPPH 50% inhibitory concentrations (IC50) of fermented tamarind-turmeric and tamarind-turmeric-ginger beverages were 2.14 and 2.23 µg/mL, respectively, revealing antiradical activities of 37.74 and 44.84 µmol of reduced DPPH. The tamarind-turmeric-ginger combination had a hypolipidemic effect after the fattening phase, reducing triglycerides from 2.24 to 1.81 mg/dL, LDL cholesterol from 5.87 to 0.26 mg/dL, and total cholesterol from 6.02 to 0.42 mg/dL. However, it increased HDL cholesterol from 0.35 to 1.54 mg/dL. Regarding antioxidant enzymes such as superoxide dismutase and glutathione peroxidase, tamarind-turmeric-ginger blend led to increases after the fattening phase from 4.44 to 10.29 U/mL for superoxide dismutase and from 12.02 to 193.16 U/mL for glutathione peroxidase. Beverages prepared with tamarind, turmeric, and ginger demonstrated substantial antioxidant potential, stimulating increased antioxidant enzyme activity that may help mitigate metabolic diseases.
Published in | International Journal of Nutrition and Food Sciences (Volume 14, Issue 4) |
DOI | 10.11648/j.ijnfs.20251404.13 |
Page(s) | 199-210 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Tamarind, Ginger, Turmeric, Fermentation, Antioxidant Potential
Beverages | Vitamin C (mg/L) | |||
---|---|---|---|---|
Times | T100% | TC10% | TG10% | TCG10% |
T0H | 27.61±0.0b | 19.82±0.0a | 21.24±0.0a | 27.14±0.0b |
T12H | 21.47±0.0b | 21.47±0.0a | 20.53±0.0a | 27.61±0.0b |
T24H | 27.61±0.0b | 25.96±0.0b | 21.24±0.0a | 28.32±0.0b |
T36H | 21.95±0.0a | 24.78±0.0b | 23.36±0.0a | 42.96±0.0b |
Beverages | Flavonoides (mg EQ/L) | |||
---|---|---|---|---|
Times | T100% | TC10% | TG10% | TCG10% |
T0H | 0.119±0.01a | 0.140±0.02a | 0.127±0.01a | 0.132±0.02a |
T12H | 0.119±0.01a | 0.194±0.1b | 0.108±0.01a | 0.131±0.02a |
T24H | 0.131±0.01a | 0.148±0.01a | 0.134±0.02a | 0.164±0.01a |
T36H | 0.068±0.01a | 0.073±0.02a | 0.076±0.01a | 0.079±0.01a |
Time | Vitamin C | IC50 (µg/ml) Beverages | |||
---|---|---|---|---|---|
T100% | TC10% | TG10% | TCG10% | ||
T 0H | 1.61 | 3.11 ± 0.1 a | 1.82± 0.1 a | 4.86 ± 0.2 c | 2.65± 0.1 b |
T 12H | 1.61 | 4.51 ± 0.1c | 2.32 ± 0.2c | 4.86 ± 0.2 c | 6.08 ± 0.2e |
T 24H | 1.61 | 6.35±0.2 j | 2.46 ± 0.2 j | 4.07 ± 0.2 b | 3.18 ± 0.2 j |
T 36H | 1.61 | 6.3±0.2 j | 2.14 ± 0.1b | 3.5 ± 0.2a | 2.23 ± 0.1a |
Time | Vitamine C | ARP (µmol. ml/µg) | |||
---|---|---|---|---|---|
Beverages | |||||
T100% | TC10% | TG10% | TCG10% | ||
T0H | 62.11±0.2a | 32.15±0.2d | 54.95±0.2e | 20.58±0.1 a | 37.74±0.2d |
T12H | 62.11±0.2a | 22.17±0.1b | 43.10±0.1c | 20.58±0.1a | 16.45±0.1a |
T24H | 62.11±0.2a | 15.75±0.1a | 40.65±0.1b | 24.57±0.2c | 31.45±0.1b |
T36H | 62.11±0.1a | 15.87±0.1a | 46.73±0.2d | 28.57±0.2d | 44.84±0.2e |
IC50 | Half Maximal Inhibitory Concentration |
ROS | Reactive Oxygen Species |
DNA | Deoxyribonucleic Acid |
LDL | Low-Density Lipoprotein |
HDL | High-Density Lipoprotein |
SOD | Superoxide Dismutase |
GPX | Glutathione Peroxidase |
[1] | FAO, FIDA, & PAM. (2015). L'état de l'insécurité alimentaire dans le monde: Atteindre les objectifs internationaux de réduction de la faim d'ici 2015: Bilan des progrès inégaux. FAO. |
[2] | Callias, C. (2007). Les alicaments dans la lutte contre l’hypercholestérolémie. Bulletin de la Société des Enseignants Neuchâtelois de Sciences, (30), 18. |
[3] | Prentki, M., & Nolan, C. J. (2006). Islet beta cell failure in type 2 diabetes. The Journal of clinical investigation, 116(7), 1802-1812. |
[4] | Iserin, P., Moulard, F., Rachel, R., Biaujeaud, M., Ringuet, J., Bloch, J., Ybert, E., Vican, P., Masson, M., Restellini, J.-P., & Botrel, A. (2001). La rousse: encyclopédie des plantes médicinales; identification, préparation, soins (2e éd.). Paris. |
[5] | Di Cagno, R., Minervini, G., Rizzello, CG, De Angelis, M., & Gobbetti, M. (2011). Effet de la fermentation lactique sur les propriétés antioxydantes, la texture, la couleur et les propriétés sensorielles des smoothies rouges et verts. Food microbiology, 28 (5), 1062-1071. |
[6] | Liu, S.-N., Y. Han et Z.-J. Zhou. (2011). Bactéries lactiques dans la bière traditionnelle chinoise fermentée nourriture. Food Research International 44: 643-651. |
[7] | Agbo, A. E., Méité, S., Gbogouri, G. A., Gouekou, A. D., Kouamé, C. E., Kouassi, K., & Brou, K. (2020). Impact des épices antioxydantes sur la vitamine B9 et le β-carotène dans les feuilles de patate douce cuites à la vapeur. Acta Horticulturae, 1292(1), 383-392. |
[8] | Kouamé-Osnou, A. C. E., Agbo, A. E.., Gbogbo, M., & Gbogouri, A. (2023). Impact of spices on micronutrients, phenolic compounds, in vitro and in vivo antioxidant potentialities in eggplant leaves cooked with water. American Journal of BioScience, 11(2). |
[9] | Hombourger, C. (2010). Le curcuma, de l’épice au médicament (Thèse de doctorat en pharmacie, Université de Nancy). Unité de formation et de recherche des sciences de la santé, Université de Nancy, Nancy. |
[10] | Kouamé A. S. (2022). Enquete de consommation sur le tamarin (tamarindus indica. l), le gingembre (Zingiber officinal) et le curcuma (Curcuma longa) et formulation de boisson à fort potentiel antioxydant. Mémoire de Master 2, Université Nangui Abrogoua. 53 p. |
[11] | Lim, C. Y., Mat Junit, S., Abdulla, M. A., & Abdul Aziz, A. (2013). In vivo biochemical and gene expression analyses of the antioxidant activities and hypocholesterolaemic properties of Tamarindus indica fruit pulp extract. PLOS ONE, 8(7), e70058. |
[12] | Wastyk, H. C., Fragiadakis, G. K., Perelman, D., Dahan, D., Merrill, B. D., Yu, F. B., Topf, M., Gonzalez, C. G., Van Treuren, W., Han, S., Robinson, J. L., Elias, J. E., Sonnenburg, E. D., Gardner, C. D., & Sonnenburg, J. L. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137-4153. e14. |
[13] | Corona, O., Alfonzo, A., Ventimiglia, G., Nasca, A., Francesca, N., Martorana, A., Moschetti, G., & Settanni, L. (2016). Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiology, 59, 43-56. |
[14] | Millán, J., Pintó, X., Muñoz, A., Zúñiga, M., Rubiés-Prat, J., Pallardo, L. F., Masana, L., Mangas, A., Hernández-Mijares, A., González-Santos, P., Ascaso, J. F., & Pedro-Botet, J. (2009). Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vascular Health and Risk Management, 5, 757-765. |
[15] | Pongracz, G., Weiser, H., & Matzinger, D. (1971). Tocopherols—Antioxidant. Fat Science Technology, 97(1), 90-104. |
[16] | Rodríguez-Amaya, D. B. (1997). Caroténoïdes et préparation des aliments: rétention des caroténoïdes provitamine A dans les aliments préparés, transformés et stockés. Arlington, VA: John Snow Incorporated/OMNI Project. |
[17] | Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178. |
[18] | Meda, L., Lamien, C., Romito, M., Millogo, J., & Nacoulma, O. (2005). Determination of the total phenolic, flavonoid, and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571-577. |
[19] | Parejo I., Codina C., Petrakis C., & Kefalas P. (2000). Evaluation of scavenging activity assessed by Co(II)/EDTA-induced luminal chemiluminescence and DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical assay. Journal of Pharmacological and Toxicological Methods, 44, 507-512. |
[20] | Kroyer, G. T. (2004). Red clover extract as an antioxidant active and functional food ingredient. Innovative Food Science & Emerging Technologies, 5(1), 101-105. |
[21] | Boubezari, I., & Boubendir, A. (2016). Évaluation de l'effet de la matrice alimentaire (cas de jus de carotte) et la conservation sur la viabilité des Lactobacillus et leurs aptitudes probiotiques (Mémoire de master, Université Mohammed Seddik Benyabia - Jüel). |
[22] | Filannino, P., Azzi, L., Cavoski, I., Vincentini, O., Rizzello, C. G., Gobbetti, M., & Di Cagno, R. (2013). Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology, 163, 184-192. |
[23] | Di Cagno, R., Surico, R. F., Siragusa, S., De Angelis, M., Paradiso, A., Minervini, F., De Gara, L., & Gobbetti, M. (2008). Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans, or marrows. International Journal of Food Microbiology. |
[24] | Huynh, N. T., Van Camp, J., Smagghe, G., Van der Meeren, P., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes. International Journal of Molecular Sciences, 15. |
[25] | Sosulki, F. K., Krygier, L., & Hogge, L. (1982). Free, esterified, and insoluble-bound phenolic acids: Composition of phenolic acids in cereal and potato flours. Journal of Agricultural and Food Chemistry, 30(2), 330-340. |
[26] | Bartolome, B., & Gomez-Cordoves, C. (1999). Barley spent grain: Release of hydroxycinnamic acids (ferulic and p-coumaric acids) by commercial enzyme preparations. Journal of the Science of Food and Agriculture, 79, 435-439. |
[27] | Kokkinomagoulos, E., Nikolaou, A., Kourkoutas, Y., & Kandylis, P. (2020). Evaluation of yeast strains for pomegranate alcoholic beverage production: Effect on physicochemical characteristics, antioxidant activity, and aroma compounds. Microorganisms, 8(10), 1583. |
[28] | Salve, R. V., Chavan, R., Pawase, P., Kelapure, N., Jaju, R., et al. (2023). The impact of the fermentation process on bioactive compounds in turmeric: A review. Journal of Food Chemistry & Nanotechnology, 9(S1), S367-S374. |
[29] | Tan, Y., Gao, M., Li, L., Jiang, H., Liu, Y., Gu, T., & Zhang, J. (2024). Functional components and antioxidant activity were improved in ginger fermented by Bifidobacterium adolescentis and Monascus purpureus. LWT, 197, 1-9. |
[30] | Sudjaroen, Y., Haubner, R., Würtele, G., Hull, W. E., Erben, G., et al. (2005). Isolation and structure elucidation of phenolic antioxidants from tamarind (Tamarindus indica L.) seeds and pericarp. Food and Chemical Toxicology, 43(11), 1673-1682. |
[31] | Theriault, A., Wang, Q., Van Iderstine, S. C., Chen, B., Franke, A. A., et al. (2000). Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. Journal of Lipid Research, 41(12), 1969-1979. Thibodeau, L. (2010). Dossier spécial sur les boissons sucrées. Bulletin de Santé Publique. |
[32] | Sefi, M., Fetoui, H., Lachkar, N., Tahraoui, A., Lyoussi, B., Boudawara, T., & Zeghal, N. (2011). Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Journal of Ethnopharmacology, 135, 243-250. |
[33] | Zeweil, H. S., Zahran, S. M., Ahmed, M. H., El-Gindy, Y., & Shaglouf, W. G. M. (2016). Effects of allicin and lycopene on performance, carcass, hematological profile, and antioxidant status of growing rabbits through summer season. Journal of the Advances in Agricultural Researches, 21(4), 622-637. |
[34] | Li, R. W., Douglas, T. D., Maiyoh, G. K., Adeli, K., & Theriault, A. G. (2006). Green tea leaf extract improves lipid and glucose homeostasis in a fructose-fed insulin-resistant hamster model. Journal of Ethnopharmacology, 104(1-2), 24-31. |
[35] | Hayek, T., Ito, Y., Azrolan, N., Verdery, R. B., Aalto-Setälä, K., Walsh, A., & Breslow, J. L. (1993). Dietary fat increases high-density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) A-I: Presentation of a new animal model and mechanistic studies in human Apo A-I transgenic and control mice. The Journal of Clinical Investigation, 91(4), 1665-1671. |
[36] | Martinello, F., Soares, S. M., Franco, J. J., Santos, A. D., Sugohara, A., Garcia, S. B. & Uyemura, S. A. (2006). Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters. Food and Chemical Toxicology, 44(6), 810-818. |
[37] | Przygodzka, M., Zielińska, D., Ciesarová, Z., Kukurová, K., & Zieliński, H. (2014). Comparaison des méthodes d'évaluation de la capacité antioxydante et des composés phénoliques dans les épices courantes. Science et technologie des aliments, 58(2), 321-326. |
[38] | Dorion, S., Ouellet, J. C., & Rivoal, J. (2021). Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites, 11(9), 641. |
[39] | Derouiche, S., Kawther, A., Manel, D., Soumya, B. A., & Kechrid, Z. (2013). The effects of copper supplement on zinc status, enzymes of zinc activities, and antioxidant status in alloxan-induced diabetic rats fed on zinc over-dose diet. International Journal of Nutrition and Metabolism, 5(5), 82-87. |
[40] | Vertuani, S., Angusti, A., & Manfredini, S. (2004). The antioxidants and pro-antioxidants network: An overview. Current Pharmaceutical Design, 10(14), 1677-1694. |
[41] | Kensler, T. W., Wakabayashi, N., & Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology, 47, 89-116. |
APA Style
Stéphanie, A. E. R. I., Edith, A. A., Moussa, G., Kouakou, B. (2025). Hypolipidemic and Antioxidant Potential of Fermented Beverages Made from Tamarind (Tamarindus indica), Ginger (Zingiber officinale), and Turmeric (Curcuma longa L.) in Rabbits. International Journal of Nutrition and Food Sciences, 14(4), 199-210. https://doi.org/10.11648/j.ijnfs.20251404.13
ACS Style
Stéphanie, A. E. R. I.; Edith, A. A.; Moussa, G.; Kouakou, B. Hypolipidemic and Antioxidant Potential of Fermented Beverages Made from Tamarind (Tamarindus indica), Ginger (Zingiber officinale), and Turmeric (Curcuma longa L.) in Rabbits. Int. J. Nutr. Food Sci. 2025, 14(4), 199-210. doi: 10.11648/j.ijnfs.20251404.13
AMA Style
Stéphanie AERI, Edith AA, Moussa G, Kouakou B. Hypolipidemic and Antioxidant Potential of Fermented Beverages Made from Tamarind (Tamarindus indica), Ginger (Zingiber officinale), and Turmeric (Curcuma longa L.) in Rabbits. Int J Nutr Food Sci. 2025;14(4):199-210. doi: 10.11648/j.ijnfs.20251404.13
@article{10.11648/j.ijnfs.20251404.13, author = {Anoh Ettien Raïssa Inès Stéphanie and Agbo Adouko Edith and Gbogbo Moussa and Brou Kouakou}, title = {Hypolipidemic and Antioxidant Potential of Fermented Beverages Made from Tamarind (Tamarindus indica), Ginger (Zingiber officinale), and Turmeric (Curcuma longa L.) in Rabbits }, journal = {International Journal of Nutrition and Food Sciences}, volume = {14}, number = {4}, pages = {199-210}, doi = {10.11648/j.ijnfs.20251404.13}, url = {https://doi.org/10.11648/j.ijnfs.20251404.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20251404.13}, abstract = {Beverages are important components of diet as they facilitate hydration. However, their high sugar content is often implicated in metabolic diseases development. Tamarind (Tamarindus indica), turmeric (Curcuma longa L.), and ginger (Zingiber officinale) may help address this issue due to their antioxidant properties. A study was therefore conducted to assess the antioxidant properties of a tamarind-based beverage prepared with 10% turmeric and ginger. The beverages were subjected to spontaneous fermentation for 36 hours at 37°C. Subsequent analyses were performed to evaluate vitamin C content, total phenolic compounds, flavonoids, and beverage antioxidant potential. The in vivo hypolipidemic and antioxidant properties were also tested on healthy 2-month-old rabbits. Results revealed that the combination of tamarind (90%), turmeric (5%), and ginger (5%) led to a significant increase in vitamin C and phenolic compound levels, rising from 27.14 to 42.95 mg/L and from 1.498 to 1.514 mg GAE/L, respectively. In tamarind-turmeric-ginger beverage, flavonoid levels increased from 0.132 ± 0.02 to 0.164 ± 0.01 mg QE/L. DPPH 50% inhibitory concentrations (IC50) of fermented tamarind-turmeric and tamarind-turmeric-ginger beverages were 2.14 and 2.23 µg/mL, respectively, revealing antiradical activities of 37.74 and 44.84 µmol of reduced DPPH. The tamarind-turmeric-ginger combination had a hypolipidemic effect after the fattening phase, reducing triglycerides from 2.24 to 1.81 mg/dL, LDL cholesterol from 5.87 to 0.26 mg/dL, and total cholesterol from 6.02 to 0.42 mg/dL. However, it increased HDL cholesterol from 0.35 to 1.54 mg/dL. Regarding antioxidant enzymes such as superoxide dismutase and glutathione peroxidase, tamarind-turmeric-ginger blend led to increases after the fattening phase from 4.44 to 10.29 U/mL for superoxide dismutase and from 12.02 to 193.16 U/mL for glutathione peroxidase. Beverages prepared with tamarind, turmeric, and ginger demonstrated substantial antioxidant potential, stimulating increased antioxidant enzyme activity that may help mitigate metabolic diseases.}, year = {2025} }
TY - JOUR T1 - Hypolipidemic and Antioxidant Potential of Fermented Beverages Made from Tamarind (Tamarindus indica), Ginger (Zingiber officinale), and Turmeric (Curcuma longa L.) in Rabbits AU - Anoh Ettien Raïssa Inès Stéphanie AU - Agbo Adouko Edith AU - Gbogbo Moussa AU - Brou Kouakou Y1 - 2025/07/16 PY - 2025 N1 - https://doi.org/10.11648/j.ijnfs.20251404.13 DO - 10.11648/j.ijnfs.20251404.13 T2 - International Journal of Nutrition and Food Sciences JF - International Journal of Nutrition and Food Sciences JO - International Journal of Nutrition and Food Sciences SP - 199 EP - 210 PB - Science Publishing Group SN - 2327-2716 UR - https://doi.org/10.11648/j.ijnfs.20251404.13 AB - Beverages are important components of diet as they facilitate hydration. However, their high sugar content is often implicated in metabolic diseases development. Tamarind (Tamarindus indica), turmeric (Curcuma longa L.), and ginger (Zingiber officinale) may help address this issue due to their antioxidant properties. A study was therefore conducted to assess the antioxidant properties of a tamarind-based beverage prepared with 10% turmeric and ginger. The beverages were subjected to spontaneous fermentation for 36 hours at 37°C. Subsequent analyses were performed to evaluate vitamin C content, total phenolic compounds, flavonoids, and beverage antioxidant potential. The in vivo hypolipidemic and antioxidant properties were also tested on healthy 2-month-old rabbits. Results revealed that the combination of tamarind (90%), turmeric (5%), and ginger (5%) led to a significant increase in vitamin C and phenolic compound levels, rising from 27.14 to 42.95 mg/L and from 1.498 to 1.514 mg GAE/L, respectively. In tamarind-turmeric-ginger beverage, flavonoid levels increased from 0.132 ± 0.02 to 0.164 ± 0.01 mg QE/L. DPPH 50% inhibitory concentrations (IC50) of fermented tamarind-turmeric and tamarind-turmeric-ginger beverages were 2.14 and 2.23 µg/mL, respectively, revealing antiradical activities of 37.74 and 44.84 µmol of reduced DPPH. The tamarind-turmeric-ginger combination had a hypolipidemic effect after the fattening phase, reducing triglycerides from 2.24 to 1.81 mg/dL, LDL cholesterol from 5.87 to 0.26 mg/dL, and total cholesterol from 6.02 to 0.42 mg/dL. However, it increased HDL cholesterol from 0.35 to 1.54 mg/dL. Regarding antioxidant enzymes such as superoxide dismutase and glutathione peroxidase, tamarind-turmeric-ginger blend led to increases after the fattening phase from 4.44 to 10.29 U/mL for superoxide dismutase and from 12.02 to 193.16 U/mL for glutathione peroxidase. Beverages prepared with tamarind, turmeric, and ginger demonstrated substantial antioxidant potential, stimulating increased antioxidant enzyme activity that may help mitigate metabolic diseases. VL - 14 IS - 4 ER -